3-symmetric and 3-decomposable geometric drawings of Kn
نویسندگان
چکیده
Even the most super cial glance at the vast majority of crossing-minimal geometric drawings of Kn reveals two hard-to-miss features. First, all such drawings appear to be 3-fold symmetric (or simply 3-symmetric). And second, they all are 3-decomposable, that is, there is a triangle T enclosing the drawing, and a balanced partition A,B, C of the underlying set of points P , such that the orthogonal projections of P onto the sides of T show A between B and C on one side, B between A and C on another side, and C between A and B on the third side. In fact, we conjecture that all optimal drawings are 3-decomposable, and that there are 3-symmetric optimal constructions for all n multiple of 3. In this paper, we show that any 3-decomposable geometric drawing of Kn has at least 0.380029 ( n 4 ) + Θ(n) crossings. On the other hand, we produce 3-symmetric and 3-decomposable drawings that improve the general upper bound for the rectilinear crossing number of Kn to 0.380488 ( n 4 ) +Θ(n3). We also give explicit 3-symmetric and 3-decomposable constructions for n < 100 that are at least as good as those previously known.
منابع مشابه
S. Fernández-Merchant †
Even the most superficial glance at the vast majority of crossing-minimal geometric drawings of Kn reveals two hard-to-miss features. First, all such drawings appear to be 3-fold symmetric (or simply 3-symmetric) . And second, they all are 3-decomposable, that is, there is a triangle T enclosing the drawing, and a balanced partition A,B,C of the underlying set of points P , such that the orthog...
متن کاملA Lower Bound for the Rectilinear Crossing Number
We give a new lower bound for the rectilinear crossing number cr(n) of the complete geometric graph Kn. We prove that cr(n) ≥ 14 ¥ n 2 ¦ ¥ n−1 2 ¦ ¥ n−2 2 ¦ ¥ n−3 2 ¦ and we extend the proof of the result to pseudolinear drawings of Kn.
متن کاملOn the decomposable numerical range of operators
Let $V$ be an $n$-dimensional complex inner product space. Suppose $H$ is a subgroup of the symmetric group of degree $m$, and $chi :Hrightarrow mathbb{C} $ is an irreducible character (not necessarily linear). Denote by $V_{chi}(H)$ the symmetry class of tensors associated with $H$ and $chi$. Let $K(T)in (V_{chi}(H))$ be the operator induced by $Tin text{End}(V)$. Th...
متن کاملNon-Shellable Drawings of Kn with Few Crossings
In the early 60s, Harary and Hill conjectured H(n) := 1 4b2 cbn−1 2 cbn−2 2 cbn−3 2 c to be the minimum number of crossings among all drawings of the complete graph Kn. It has recently been shown that this conjecture holds for so-called shellable drawings of Kn. For n ≥ 11 odd, we construct a non-shellable family of drawings of Kn with exactly H(n) crossings. In particular, every edge in our dr...
متن کاملMore on the crossing number of Kn: Monotone drawings
The Harary-Hill conjecture states that the minimum number of crossings in a drawing of the complete graph Kn is Z(n) := 1 4 ⌊ n 2 ⌋ ⌊ n−1 2 ⌋ ⌊ n−2 2 ⌋ ⌊ n−3 2 ⌋ . This conjecture was recently proved for 2-page book drawings of Kn. As an extension of this technique, we prove the conjecture for monotone drawings of Kn, that is, drawings where all vertices have different x-coordinates and the edg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 158 شماره
صفحات -
تاریخ انتشار 2010